
Copyright © 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
VRCAI 2011, Hong Kong, China, December 11 – 12, 2011.
© 2011 ACM 978-1-4503-1060-4/11/0012 $10.00

BTF Rendering in Blender

Martin Hatka∗ Michal Haindl†

Institute of Information Theory and Automation of the ASCR
Prague, Czech Republic

Abstract

Bidirectional texture function (BTF) is 7D function of planar coor-
dinates, spectral coordinate, and viewing and illumination angles,
respectively. BTF is the recent most advanced representation of
visual properties of surface materials. Unlike smooth textures, it
specifies their altering appearance due to varying illumination and
viewing conditions. This BTF visual appearance dependency on
viewing and illumination conditions significantly complicates not
only its acquisition, representation, and modeling but also makes its
rendering noticeably more demanding. BTF textures are acquired
by costly measurements of real materials and their subsequent non-
trivial processing. While several techniques for measurement or
processing of BTF textures have been described already, there is
no environment allowing to support BTF texture rendering. This
contribution describes novel Blender texture plugin for the purpose
of BTF texture mapping and rendering. The plugin benefits from
our previously developed BTF Roller texture enlargement method
which is integral part of its implementation. The presented plugin
allows to create realistic computer animations with additional BTF
textures of any required size mapped onto an object surfaces while
the other functionality of Blender retains.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity;

Keywords: rendering, bidirectional texture function, Blender

1 Introduction

There is neither professional nor open source 3D graphics appli-
cation currently available which enables BTF texture [Dana et al.
1997; Filip and Haindl 2009] rendering. However an ever-growing
number of real world computer vision applications require realistic
rendering of genuine materials which cannot be achieved without
this recently most advanced surface material representation. A sim-
ple alternative would be to write a proprietary BTF shader, however
to develop essential 3D graphics environment for BTF rendering
would be very difficult and resources demanding probably even all
options offered by contemporary 3D graphics applications could
not be achieved. Thus an existing graphical application suitable for
BTF texture rendering enhancement is the appropriate solution. As
it turned out the best choice is the 3D graphics application Blender
(see Fig. 1). The Blenderis an open source software which is being
actively developed under the supervision of the Blender Foundation
and the source codes written in C++ are freely available.

∗e-mail: hatka@utia.cas.cz
†e-mail: haindl@utia.cas.cz

Figure 1: Drapery 3D model created and textured using UV-
mapping in Blender can be easily coated with BTF texture thanks
to our BTF texture plugin.

1.1 Bidirectional Texture Function

Multispectral BTF is a seven-dimensional function, which consid-
ers measurement dependency on color spectrum, planar material
position, as well as its dependence on illumination and viewing an-
gles:

BTF (r, θi, φi, θv, φv) (1)

where the multiindex r = [r1, r2, r3] specifies planar horizontal
and vertical position in material sample image, r3 is the spectral
index and θ, φ are elevation and azimuthal angles of the illumina-
tion and view direction vector (see Fig. 2). The BTF measurements
comprise a whole hemisphere of light and camera positions in ob-
served material sample coordinates according to selected quanti-
zation steps (see Fig. 3). A fast BTF synthesis method with sub-
stantial compression is essential for applications requiring accurate
realtime rendering of these data using graphics hardware. In ad-
dition, the original BTF measurements only cannot be used in any
practical application due to missing necessary measurements from
all arbitrary vantage points under arbitrary illumination and due to
their small size. Thus, a seamless spatial enlargement (modeling)
method of this otherwise huge BTF data is inevitable and also con-
stitutes an integral part of our BTF plugin.

1.2 BTF Visualization

Applying BTF textures to a 3D model surfaces dramatically en-
hances the visual appearance of the objects in rendered scene. Such
texturing is the best and physically correct way to achieve photo-
realistic results. Accurate texture mapping is essential to get a high
quality visualization. Suitable for BTF texturing is UV-mapping
technique which projects a texture map onto a 3D object while the
texture map is handled manually. If the accurate UV-mapping of
the texture is done, the BTF application to the surface is straight-
forward. UV texture coordinates unambiguously define the posi-

265

Figure 2: Relationship between illumination and viewing angles
within sample coordinate system.

Figure 3: An example of light trajectory above the sample during
measurement while camera is fixed.

tion, the orientation, and the scale of the texture on the surface of
an object.

1.3 Blender

Blender1 is the free open source 3D graphics application for cre-
ation 3D models, visualizations and animations. Blender is avail-
able for all major operating system under the GNU General Public
License and it is being actively developed. The purpose of Blender
is to model and render 3D computer graphics and animations using
various techniques such as raytracing, radiosity, ambient occlusion
or scan-line rendering. Modeling techniques are primarily aimed
at facet representation of the objects. However, Bezier curves or
NURBS surfaces are supported as well. Animation capabilities in-
corporate key-framed animation tools including inverse kinematics,
armature, curve and lattice-based deformations, fluid dynamics, and
a particle system with collision detection.

Blender, as is, does not handle the dependency of the texture ap-
pearance on the lighting conditions. On the other hand, Blender
provides an interface for texture plugins. Texture plugin is a dy-
namically loaded library that exist as a separate file on a computer.
When called in it communicates with Blender through given inter-
face to generate the texture.

The rest of the paper is organized as follows. Section 2 describes a
modification of the Blender’s renderer to be able to calculate view-
ing and illumination angles for texturing purposes and the exten-
sion of Blender’s texture plugin interface. Section 3 provides an
insight into BTF texture plugin architecture. Section 4 contains re-
sults where the BTF measurements were used in comparison with

1http://www.blender.org/

Texture Synthesis

BTF Texture Plugin
involving BTF Roller
synthesis step

Texture Analysis

BTF Roller
analytical part BTF

Tiles

Measured
BTF Data

3D
model

UV texture
mapping

Input Data

+ BLENDER
with modified Blender
Texture Plugin Interface
and Blender Renderer

UV coordinates,
view and light

angles

Pixel
value

MovieImage
Rendered
Result

Rendering

Figure 4: BTF rendering using Blender, texture plugin, and the
BTF Roller texture synthesis algorithm. Texture analysis using the
BTF Roller (yellow box) can be done independently before the ren-
dering. Texture synthesis implemented in the texture plugin is per-
formed as inseparable part of the rendering process (red box). BTF
tiles are generated and stored and they are subsequently reused dur-
ing the rendering.

the alternative established approach which uses only smooth planar
textures. Last section 5 concludes the paper. The overall scheme
of our proposed BTF texture rendering solution using Blender is
provided in the Fig. 4.

2 Blender Modification

In the Blender’s rendering pipeline there is no dependency of the
texture appearance on the viewing and illumination conditions con-
sidered. Although several types of diffuse and specular shaders are
implemented and these shaders use the surface normal, viewing and
illumination directions, the texturing is performed earlier than the
shading. Therefore these shaders cannot be used for the BTF tex-
turing. This is the reason why the BTF texturing should by solved
in a different way. The solution is to involve the capability to vary
the texture appearance on the illumination and viewing conditions
directly in the texturing process.

Due to the huge amount of typical BTF data, a direct BTF support
in Blender seems to be a very complex, difficult and ineffective
task. On the other hand, a texture plugin is an interesting and much
simpler way to incorporate BTF textures to Blender. Texture plugin
communicates with Blender through the standardized interface and
texture data can be treated outside Blender. The plugin interface has
to be able to handle the dependency of the texture on the viewing
and illumination conditions.

The first task is to extend the Blender’s renderer to compute the
viewing and illumination azimuthal and elevation angles and the
subsequent task is to modify the plugin interface to be able to pass
these angles to the texture plugin.

266

http://www.blender.org/

−→
tx ≡ ~u

−→
ty ≡ ~v

−→
tz ≡ ~n

~d•

V1

V2

V3

V

φ•

θ•

Figure 5: Computation of the azimuthal and elevation angle for
the view and illumination direction is based on a transform of view
vector or illumination vector to the texture coordinate system.

2.1 Rendering Pipeline Viewing and Illumination Angle
Computation

The only necessary modification of the renderer was to incorporate
an evaluation of elevation and azimuthal angles of the illumination
and view direction. Principle of the modification is the following.

Each rendered pixel belongs to a triangular facet. In view of the fact
that the spatial coordinates and UV texture coordinates of the trian-
gle vertices are known, the UV texture coordinates of the rendered
pixel can be evaluated. Moreover, view and illumination vectors
are known. Projection of the view and illumination vector on the
axes of the texture space provides the coordinates of the view and
illumination vector in the texture space. Finally, the elevation and
azimuthal angles of the view and illumination vector are calculated.

Let’s consider any rendered 3D object which consists of an arbi-
trary number of triangular facets. The scene is rendered in pixel
by pixel order and each rendered pixel belongs to a certain facet of
the rendered object. Further, let’s consider the rendered pixel V
which belongs to the facet 4V1V2V3 (see Fig. 5). The spatial
coordinates of the vertices V1, V2, V3 of the facet 4V1V2V3 in
the orthonormal basis S = (~x, ~y, ~z) are (V1)S = (vx1 , v

y
1 , v

z
1),

(V2)S = (vx2 , v
y
2 , v

z
2), (V3)S = (vx3 , v

y
3 , v

z
3), respectively.

Then the texture mapping function TUV , TUV (vx• , v
y
• , v

z
•) =

(vu• , v
v
•), assigns to the vertices V1, V2, V3 corresponding tex-

ture coordinates (V1)T = (vu1 , v
v
1 , 0), (V2)T = (vu2 , v

v
2 , 0),

(V3)T = (vu3 , v
v
3 , 0), where T = (~u,~v, ~w) is the orthonormal

basis of the 3D texture coordinates. Note that the triangular facet
4V1V2V3 is coplanar with the plane given by the texture space
axes ~u and ~v and its normal ~n is parallel with the axis ~w of
the space of the texture coordinates. Because the relationship be-
tween the spatial coordinates and the texture coordinates is known
(the UV-mapping is done in a 3D model), the axes of the texture
space can be expressed in the spatial coordinates, i.e. ~tx = (~u)S ,
~ty = (~v)S and ~tz = (~w)S .

As the next step, let’s denote the view and illumination directions
expressed in spatial coordinates as ~dv and ~dl, respectively. Then
the projection of a vector ~d• in the directions of the axes ~tx, ~ty and
~tz of the texture coordinates expressed in the spatial coordinates
yields in a vector ~s•. Vector ~s• corresponds to the vector ~d•
expressed in the texture coordinates, i.e. ~s• = (su• , s

v
•, s

w
•) =

(~d•)T . Finally, while the vector ~s• = (~d•)T expressed in the
texture coordinates is known, required azimuthal angle φ• and
elevation angle θ• can be easily calculated from the relationship
between the cartesian and spherical coordinates:

cos θ = sw , (2)

sinφ =
sv√

(su)2 + (sv)2
, (3)

cosφ =
su√

(su)2 + (sv)2
. (4)

2.2 BTF Texture Plugin Interface

Texture plugin takes 3D texture coordinate vector (u, v, w) as an
input and returns back the vector (y, YR, YG, YB , Nu, Nv, Nw)
as an output, where y is the intensity of the pixel (in the case of
monochromatic texture), YR, YG, YB are the RGB components
and Nu, Nv , Nw are the normal vector components in texture
coordinates.

As described in section 1.1, BTF is 7D function of planar coor-
dinates, spectral coordinate, and viewing and illumination angles,
BTF (x, y, r, θi, φi, θv, φv). Input interface was extended to pass
the viewing and illumination angles hence input vector (u, v, w)
was substituted by (u, v, w, θi, φi, θv, φv), where w is not used
(only planar textures are considered). To set the texture coordinates
u and v, UV-mapping technique, which is considered as the most
accurate, was used.

3 BTF Texture Plugin

BTF texture measurement consists of thousands of colour images
(section 1.1) and to incorporate them directly in Blender seems dif-
ficult. For that reason it proved to be very effective to take advan-
tage of texture plugin. Proposed BTF texture plugin communicates
with Blender through Blender texture plugin interface additionally
extended of viewing and illumination azimuthal and elevation an-
gles.

Main advantage of this approach is a possibility to implement vari-
ous texture synthesis algorithms directly in the plugin, particularly
the BTF Roller algorithm (section 3.3). Plugin performance opti-
mization is then straightforward.

3.1 Barycentric Coordinates Interpolation

BTF textures are measured for finite number of camera and light
source positions, however in practice it is necessary to evaluate
pixel values also for other unmeasured combinations of camera and
light source positions. For such a combination interpolation, which
is motivated by spherical barycentric coordinates [Polthier et al.
2006], on a triangle with known vertex pixel values is performed.
Interpolation using spherical barycentric coordinates would be the
most accurate but computationally complex. The following approx-
imation seems to be sufficient.

Let’s consider the hemisphere (see Fig. 6) with its center O and
the point P on the hemisphere corresponding to desired azimuthal
and elevation angle of the view or illumination direction. Let’s YP

denotes the value of the desired pixel viewed or illuminated under
the direction corresponding to the point P on the hemisphere. Fur-
ther, denote the three known measured directions, which are closest
to the P , as P1, P2 and P3 and the values of corresponding
pixel as YP1 , YP2 and YP3 . Then the value of the pixel YP will
be YP = w1YP1 +w2YP2 +w3YP3 , where w1, w2 and w3 are
the weights of YP1 , YP2 , and YP3 , w1 + w2 + w3 = 1.

267

O

P

P1

P2

P3

Figure 6: Interpolation of the pixel P value is motivated by
barycentric coordinates. The value of the P is a weighted sum of
the P1, P2 and P3 while the weight of each pixel corresponds to the
volume of the opposite quadrilateral.

The weights are defined in the following way:

w1 =
V1

V
, w2 =

V2

V
, w3 =

V3

V
, V = V1 + V2 + V3,

where V1 denotes the volume of tetrahedron PP2P3O, V2 the
volume of PP3P1O and V3 the volume of PP1P2O. Moreover,
if O = (0, 0, 0), then

V1 =
1

6
|det(P, P2, P3)| ,

V2 =
1

6
|det(P, P3, P1)| ,

V3 =
1

6
|det(P, P1, P2)| .

3.2 BTF Data Buffer

To store whole BTF texture dataset in memory is ineffective. The
best solution is to implement buffer to store BTF texture data. The
size of the buffer is parameter specified by user. Appropriate soft-
ware design of the buffer is essential to the plugin performance and
the right optimization can dramatically speed up the BTF rendering
process.

The buffer is designed as a double linked list (see Fig. 7). This list
holds BTF texture image data, each node for the BTF slice corre-
sponding to a particular texture measurement. Moreover, the list is
extended by an array of pointers to the list nodes. This optimiza-
tion allows efficient check if the BTF slice is loaded in the buffer
and also fast search in the list. The BTF slices are kept ordered by
the last access time and if the memory dedicated to the buffer is
exhausted, the first accessed slice is removed from the list.

3.3 Texture Synthesis

BTF texture samples has only limited size, typically several hun-
dreds or thousands of pixels. The limited size of the texture mea-
surement is the fundamental problem while an object of a 3D scene
should by covered with the BTF texture. The simplest way to over-
come this problem is to tile the texture sample. On the other hand,
the tiled texture has remarkable seams which dramatically decrease
the quality of the resulting texture.

1 2 3 4 N-1 N

NULL pA pC NULL pB NULL

A B C

I2 IN−1 I3

Figure 7: Buffer with loaded texture data. The buffer consists of
double linked list containing image data and an array with pointers
to the list nodes. The array is used for fast search of the indexed
images.

In order to generate top quality BTF texture without visible seams
the synthesis step of the texture enlargement sampling type of al-
gorithm, which is called the BTF Roller [Haindl and Hatka 2005],
was incorporated in the plugin (see Fig. 8). The roller method was
chosen from possible alternatives ([Efros and Freeman 2001; Tong
et al. 2002; Leung et al. 2007] and many others) because it is fully
automatic and very fast method which produces high quality spatial
data enlargement results.

The roller method is based on the overlapping tiling and subse-
quent minimum error boundary cut. One or several optimal double
toroidal data patches are seamlessly repeated during the synthesis
step. This fully automatic method starts with the minimal tile size
detection which is limited by the size of control field, the number
of toroidal tiles we are looking for and the sample spatial frequency
content. Then the plugin input is the set of several rectangular and
mutually interchangeable BTF texture tiles. These tiles are precom-
puted only one times during the analytical step of the BTF Roller
algorithm. Because the resulting texture generated by the plugin
has an arbitrary size and is randomly accessed by the Blender, it is
inefficient to generate whole BTF slices as random tiling. More ef-
ficient approach is to generate aperiodic tiling [Cohen et al. 2003].
In our BTF texture plugin we have used the iterative version [Stam
1997] of the Wang Tiles. Then it could be simply decided which
tile and its pixel will be used while the value of the particular pixel
from the resulting texture is required by Blender. Alternatively the
synthetic BTF textures can be generated from mathematical mod-
els [Haindl 1991; Haindl and Havlı́ček 1998; Bennett and Khotan-
zad 1998; Haindl and Havlı́ček 2000; Haindl and Havlı́ček 2002;
Haindl et al. 2004; Haindl and Filip 2004] which are more flexible
and extremely compressed, because only several parameters have
to be stored. However, mathematical models can only approximate
real BTF measurements, which results in visual quality compro-
mise for some oversimplified methods.

The main advantage of the solution based on the texture plugin is
the possibility to implement various BTF texture synthesis methods
or various BTF texture models and verify them in commonly used
3D graphics application.

3.4 Plugin Parameters

Blender texture plugin interface provides a capability to define the
plugin control panel. BTF texture plugin control panel (see Fig. 9)
consists of several control elements. The user must specify a path

268

Texture Synthesis

Tile 2

Texture Analysis

Output Texture

Tile 1

Tile N

Input Texture

Figure 8: The principle of the BTF Roller algorithm. During the
analytical part, several mutually interchangeable tiles (middle) are
extracted from the input texture (left). During the extremely fast
synthesis step, synthetic texture (right) from the set of extracted tiles
(middle) is generated by random or aperiodic tiling.

to the BTF texture data. Then the user must specify number of BTF
texture tiles used by the synthesis algorithm and their size. Also
the size of the BTF data buffer can by set by the user. Finally the
size of the resulting texture has to be set by the user. User has
an opportunity to disable data loading for the preview purposes and
speed up the rendering process. Then the BTF texture is not applied
to the object.

4 Results

Texture plugin together with the modification of the Blender’s ren-
derer core allows to use BTF textures directly in the Blender. Espe-
cially, UV-mapping of the BTF textures and subsequent rendering
can lead to realistic appearance of the 3D models. We have tested
the plugin with BTF measurements either from the University of
Bonn [Müller et al. 2004] or from the Yale University [Koudelka
et al. 2003].

Fig. 10 demonstrates the application of the BTF texture plugin in-
volving BTF texture synthesis during the visualization of the inte-
rior of the Ferrari car model. Fig. 11 demonstrates the same 3D
scene without application of the BTF textures. At first sight there is
noticeable that the application of smooth textures, contrary to BTF
textures, does not allow to realistically visualize the effects like re-
flections or colour changes depending on illumination and viewing
conditions. On the other hand, there are visible artificial reflections
on the seat covered with textile material.

The advantage of BTF rendering is also demonstrated in the Fig. 12.
Images in the top row were rendered using BTF texture measure-
ments while the images in the bottom row were textured with the
non-BTF version of the same materials. Considerable difference in
the realistic appearance is evident. Similar comparison but in more
complex 3D scene is provided in Fig. 13. The example of utilization
of the BTF texture measurements in the interior design is shown in
the Fig. 14.

To improve the performance of BTF texture manipulation, BTF
Roller synthesis step has been implemented into texture plugin.
This algorithm contemporary represents the fastest way to seam-
lessly generate BTF texture of an arbitrary size.

Figure 9: BTF plugin control panel in Blender. User can specify
number of input tiles, size of the buffer and the size of the output to
control the quality of the resulting texture and performance of the
plugin.

Usage of BTF textures in Blender does not significantly slow down
the rendering process. The most time consuming part is loading of
BTF image data for desired combination of illumination and view-
ing direction. Optimized version, as described in section 3.2, re-
duces the rendering time to 10%.

5 Conclusion and Future Work

We presented the novel Blender plugin and the corresponding mi-
nor Blender modifications which together enable physically correct
realistic rendering of surface materials represented in their most ad-
vanced form - the bidirectional texture function. This plugin pro-
duces from this open source graphical software system the only
rendering system available which allows correct surface materials
presentation.

Our current implementation works with sampling based method for
BTF texture enlargement. However we plan to generalize the plu-
gin also with some BTF mathematical models. This will not only
substantially increase the BTF data compression rate but it will al-
low simultaneously also rendering of BTF edited measurements.
Finally, the future plugin release will benefit from multithread func-
tionality.

Acknowledgements

This research was supported by grant GAČR 102/08/0593 and par-
tially by the MŠMT grant 1M0572 DAR, GAČR 103/11/0335,
CESNET 387/2010.

References

BENNETT, J., AND KHOTANZAD, A. 1998. Multispectral ran-
dom field models for synthesis and analysis of color images.
IEEE Trans. on Pattern Analysis and Machine Intelligence 20,
3 (March), 327–332.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. ACM Trans. Graph.
22, 3 (July), 287–294.

269

DANA, K. J., NAYAR, S. K., VAN GINNEKEN, B., AND KOEN-
DERINK, J. J. 1997. Reflectance and texture of real-world sur-
faces. In CVPR, IEEE Computer Society, 151–157.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In ACM SIGGRAPH 2001, ACM
Press, E. Fiume, Ed., 341–346.

FILIP, J., AND HAINDL, M. 2009. Bidirectional texture function
modeling: A state of the art survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 31, 11, 1921–1940.

HAINDL, M., AND FILIP, J. 2004. A fast probabilistic bidirec-
tional texture function model. Lecture Notes in Computer Sci-
ence, 3212, 298 – 305.

HAINDL, M., AND HATKA, M. 2005. BTF roller. In Texture 2005:
Proceedings of 4th Internatinal Workshop on Texture Analysis
and Synthesis, Heriot-Watt University, Edinburgh, M. Chantler
and O. Drbohlav, Eds., 89–94.

HAINDL, M., AND HAVLÍČEK, V. 1998. Multiresolution colour
texture synthesis. In Proceedings of the 7th International Work-
shop on Robotics in Alpe-Adria-Danube Region, ASCO Art,
Bratislava, K. Dobrovodský, Ed., 297–302.

HAINDL, M., AND HAVLÍČEK, V. 2002. A multiscale colour tex-
ture model. In Proceedings of the 16th International Conference
on Pattern Recognition, IEEE Computer Society, Los Alamitos,
R. Kasturi, D. Laurendeau, and C. Suen, Eds., 255–258.

HAINDL, M., AND HAVLÍČEK, V. 2000. A multiresolution causal
colour texture model. Lecture Notes in Computer Science, 1876
(August), 114–122.

HAINDL, M., FILIP, J., AND ARNOLD, M. 2004. BTF im-
age space utmost compression and modelling method. In Pro-
ceedings of the 17th IAPR International Conference on Pattern
Recognition, IEEE, Los Alamitos, J. Kittler, M. Petrou, and
M. Nixon, Eds., vol. III, 194–197.

HAINDL, M. 1991. Texture synthesis. CWI Quarterly 4, 4 (De-
cember), 305–331.

KOUDELKA, M. L., MAGDA, S., BELHUMEUR, P. N., AND
KRIEGMAN, D. J. 2003. Acquisition, compression, and syn-
thesis of bidirectional texture functions. In Texture 2003: Third
International Workshop on Texture Analysis and Synthesis, 59–
64.

LEUNG, C.-S., PANG, W.-M., FU, C.-W., WONG, T.-T., AND
HENG, P.-A. 2007. Tileable btf. IEEE Transactions on Visual-
ization and Computer Graphics, –.

MÜLLER, G., MESETH, J., SATTLER, M., SARLETTE, R., AND
KLEIN, R. 2004. Acquisition, synthesis and rendering of bidi-
rectional texture functions. In Eurographics 2004, STAR - State
of The Art Report, Eurographics Association, Eurographics As-
sociation, 69–94.

POLTHIER, K., BELYAEV, A., (EDITORS, A. S., LANGER, T.,
BELYAEV, E., PETER SEIDEL, H., AND INFORMATIK, M.,
2006. Spherical barycentric coordinates.

STAM, J. 1997. Aperiodic texture mapping. Tech. rep., Eu-
ropean Research Consortium for Informatics and Mathematics
(ERCIM).

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND
SHUM, H.-Y. 2002. Synthesis of bidirectional texture functions
on arbitrary surfaces. ACM Transactions on Graphics (TOG) 21,
3, 665–672.

270

Figure 10: Ferrari 360 Spider car model rendered using BTF textures which allows realistic visualization of 3D scene (3D model courtesy
of DMI cars 3D models, http://www.dmi-3d.net/).

Figure 11: Ferrari 360 Spider car model rendered using smooth textures.

271

Figure 12: Comparison of the appearance of the plane textured with BTF textures of lego tile, wood and carpet (top row) and corresponding
smooth textures (bottom row).

Figure 13: BTF wood and corduroy textures applied to the chair model (left) and standard non-BTF rendering (right), respectively.

Figure 14: BTF textures can be used in the interior design to create its realistic visualization. The sofa in the image on the left
is textured with corduroy texture and in the image on the right with the dark skin texture (3D model courtesy of 3DModelFree.com,
http://www.3dmodelfree.com/)

272

